Learning from an operational utility-scale Li-Polymer battery system in a PV plant  — Purely Creative Solutions

Learning from an operational utility-scale Li-Polymer battery system in a PV plant  (256)

Seyyed Ali Pourmousavi Kani 1 , Tapan Saha 1
  1. University of Queensland, St Lucia, QLD, Australia

Utility-scale energy storage is becoming the most viable and widespread solution to safely accommodate large-scale renewable generation without harming the power system operation. Different storage technologies have been considered for such applications, where various Li-based battery technologies gained the largest share of the market, after pump hydro storage. While numerous research studies addressed optimal operation of battery storage using mathematical modelling, there are few examples of battery performance analysis in such applications. The University of Queensland owns and operates one of the largest PV/battery research facility in the world at the Gatton campus. It includes 3.275 MWp solar PV modules with three different solar tracking technologies, and 600kW/760 kWh Li-Polymer battery system. The plant is primarily responsible for meeting the campus load demand, and the excess energy, if available, can be pushed back to the local network. 

This presentation will provide valuable insights into the utility-scale battery operation in connection with a PV plant and local network based on 1.5 years of actual data. The focus will be on evaluating the operation and performance of the battery system from different perspectives. I will start with briefly introducing the plant, battery system configuration, cooling mechanism, and inverter. Then, I will briefly review battery operation rules in the plant which is managed by a central supervisory controller. Battery operation and performance for reactive power support will be reviewed next. Afterwards, voltage agreement with the local network operator will be reviewed, and the impact of the battery will be quantified in that regard. Finally, the performance of the battery for demand charge management (or peak shaving), excess PV storage, PV ramp-rate control, and additional services to the local network will also be examined based on operational data. Data analysis will show that the battery operation had positive impacts on the plant operation.